TITLE
BIOSTYR® Enables Award Winning Peirce Island WWTF to meet the City of Portsmouth, New Hampshire’s Nutrient Removal Goals

DATE & TIME
March 24, 2022
1:00 PM EST

PRESENTERS
Terry Desmarais - City of Portsmouth, NH
Larry Li - Veolia Water Technologies
SPEAKER INTRODUCTION

Terry Desmarais
Engineering Supervisor
City of Portsmouth, NH

Larry Li
BIOSTYR Product Manager
Veolia Water Technologies (dba Kruger)
Agenda

• BIOSTYR® BAF Technology Introduction
• City of Portsmouth, NH
• Pilot Testing
• Peirce Island WWTF Upgrade
BIOSTYR® & DUO: A Unique Technology

- Elegance
- Automation
- Versatility
- Performance
- Space
- Environment
BIOSTYR® System

- Biological filter: inert media + biofilm
- Bio-reactor and clarifier in one “box” (cell)
- Multiple cells in parallel
- Sludge wasted via backwashing
BIOSTYR®/DUO Media

- Polystyrene Beads
- Engineered. **Strict requirements.**
- Diameter: 3.6 - 5.0 mm
- Specific surface: **1,000 m²/m³**
- Porosity: 0.35
- Specific Gravity: 0.05
BIOSTYR® Nozzles
BIOSTYR® Applications

- Secondary cBOD & NH$_3$ Removal (secondary nitrification)
- Pre - Denitrification
- Tertiary Nitrification
- Tertiary Denitrification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2nd</th>
<th>2nd-Nit</th>
<th>Tert-Nit</th>
<th>Denit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBOD</td>
<td>10-20</td>
<td>5-15</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>TSS</td>
<td>15-25</td>
<td>10-15</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>NH$_3$-N</td>
<td>-</td>
<td>≤1.0</td>
<td>≤0.5</td>
<td>-</td>
</tr>
<tr>
<td>NO$_3$-N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≤1.0</td>
</tr>
</tbody>
</table>
BIOSTYR® Compact

BIOSTYR® Footprint ~25% of Suspended Growth System

100 MGD BIOSTYR®

100 MGD Activated Sludge
BIOSTYR® Experience
BIOSTYR® Pilot Capability
Agenda

• BIOSTYR® BAF Technology Introduction
• City of Portsmouth, NH
• Pilot Testing
• Peirce Island WWTF Upgrade
City of Portsmouth

- Seacoast New Hampshire
- Historic
- Tourist Destination
- Access to Waterways
- Pease International Tradeport
Infrastructure

- Regional Water and Sewer System
- Sewer Collection System Since 1800’s
 > 3 Permitted Combined Sewer Overflows
- Storm Drain Collection System
- Two Wastewater Treatment Facilities
 > Peirce Island WWTF: 6.1 MGD BAF
 > Pease WWTF: 1.2 MGD SBR
Great Bay Estuary

- Major Tidal Estuary = ~ 1,000 square miles
 - 52 Communities in NH and Maine
- 17 Wastewater Treatment Plants
 - NH = 13, Maine = 4
- Diverse Ecosystem of Marine Fisheries, Waterfowl and Terrestrial Wildlife
- Major Economic Resource for Recreational and Commercial Fisheries, Shellfish and Aquaculture
Peirce Island WWTF NPDES Permit

- 1985 NPDES Permit with 301(h) Waiver
- 2007 Secondary NPDES Permit
- 2009 Consent Decree
- 2012 Consent Decree Modification
- 2016 – 2021 Upgrade Construction
- 2021 Great Bay Total Nitrogen General Permit
Background: Pre-Upgrade Project

- Design Average Flow 4.8 MGD
- Peak Flow 22 MGD
- Grit Removal
- Chemically Enhanced Primary Treatment
- Sodium Hypochlorite / Bisulfite Disinfection
- Gravity Thickener & Belt Filter Press
- 3.7 Acres
Pilot Program – Technology Selection

- Fit Within Space Constraints
- Nitrogen Removal
- Future Treatment Capacity
 > Address permit unknowns
 > No additional capital costs
- Confirm Sizing Criteria
 > Wet Weather
 > Loading Rates

Pilot Plant
Technologies List

- Biological Aerated Filter (BAF)
- Sequencing Batch Reactor (SBR) with BioMag
- Conventional Activated Sludge (CAS) with BioMag
- Moving Bed Bioreactor (MBBR) & ACTIFLO® Clarification
- Moving Bed Bioreactor (MBBR) & CoMag
- Moving Bed Bioreactor (MBBR) & DAF
- Membrane Bioreactor (MBR)
- Conventional Activated Sludge (CAS)
Piloting Technology Priority Matrix

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Weight</th>
<th>BAF Rating</th>
<th>BAF Score</th>
<th>CAS-BioMag Rating</th>
<th>CAS-BioMag Score</th>
<th>MBBR-DAF Rating</th>
<th>MBBR-DAF Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Factors</td>
<td>10</td>
<td>3.0</td>
<td>30</td>
<td>2.1</td>
<td>21</td>
<td>3.2</td>
<td>32</td>
</tr>
<tr>
<td>Maintenance Factors</td>
<td>3</td>
<td>3.2</td>
<td>9.6</td>
<td>1.6</td>
<td>4.8</td>
<td>3.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Health & Safety Factors</td>
<td>27</td>
<td>3.2</td>
<td>86.4</td>
<td>2.0</td>
<td>54</td>
<td>3.3</td>
<td>89.1</td>
</tr>
<tr>
<td>Operational Track Record/Established Process</td>
<td>19</td>
<td>4.0</td>
<td>76</td>
<td>2.0</td>
<td>38</td>
<td>3.0</td>
<td>57</td>
</tr>
<tr>
<td>Ability to Retrofit TN of 8 mg/l to Meet Future TN of 3 mg/l</td>
<td>3</td>
<td>5.0</td>
<td>15</td>
<td>2.5</td>
<td>7.5</td>
<td>3.0</td>
<td>9</td>
</tr>
<tr>
<td>Response to Sustained Wet Weather Flows</td>
<td>13</td>
<td>3.5</td>
<td>45.5</td>
<td>4.0</td>
<td>52</td>
<td>3.5</td>
<td>45.5</td>
</tr>
<tr>
<td>Response to Process Disruption</td>
<td>18</td>
<td>4.0</td>
<td>72</td>
<td>3.0</td>
<td>54</td>
<td>4.0</td>
<td>72</td>
</tr>
<tr>
<td>Potential for Technology Optimization</td>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Ability to Exceed Treatment Performance Goals</td>
<td>6</td>
<td>3.0</td>
<td>18</td>
<td>4.0</td>
<td>24</td>
<td>3.0</td>
<td>18</td>
</tr>
<tr>
<td>Total Weighted Criteria</td>
<td></td>
<td>353</td>
<td></td>
<td>255</td>
<td></td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>Capital Cost (estimated - in millions)</td>
<td></td>
<td>$60.5</td>
<td></td>
<td>$54.0</td>
<td></td>
<td>$56.5</td>
<td></td>
</tr>
<tr>
<td>Value Ratio (criteria/capital cost)</td>
<td></td>
<td>5.8</td>
<td></td>
<td>4.7</td>
<td></td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Life Cycle Cost (in millions)</td>
<td></td>
<td>$75.1</td>
<td></td>
<td>$73.3</td>
<td></td>
<td>$74.8</td>
<td></td>
</tr>
<tr>
<td>Value Ratio (criteria/ life cycle cost)</td>
<td></td>
<td>4.7</td>
<td></td>
<td>3.5</td>
<td></td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>
Proposed Layout Within Fence
Background: Upgrade Design

- Design Average Flow 6.1 MGD
- Peak Flow 22 MGD
- Screening
- Two-Stage BIOSTYR® BAF
- Sodium Hypochlorite / Bisulfite Disinfection
- Wet Weather Flow Management
- Solids Building
Biological Aerated Filter (BAF) Building

- Small Footprint
 - Attached Growth vs. Suspended Growth
 - Treatment & Solids Separation in Same Reactor
- High Level of Automation
- First Stage for Carbon Removal and Nitrification
- Second Stage for Denitrification
Peirce Island WWTF Construction

Baseline Enhanced Primary Treatment

4.5 Years Construction and $92M

Upgraded BIOSTYR® Biological Aerated Filter
Overall WWTF Load Reductions

Biochemical Oxygen Demand: 90%
Total Suspended Solids: 87%
Total Nitrogen: 83%
Peirce Island Biological Oxygen Demand (BOD) Effluent

BAF Operating

Average Load (lbs/d)

Average Concentration (mg/L)

BAF Operating
Great Bay Total Nitrogen General Permit

Pounds of TN Discharged Less Than Permit:
~38,000 (growing season)

Estimate 50,000 to 70,000 lb TN/year reduction
Summary

✓ Space Constraints Addressed

✓ Nitrogen Removal Performance Allows for Credit

✓ Future Capital Upgrades Minimized
Any Questions?

Interested in Pilot Testing?

Contact Us

Larry Li
Veolia Water Technologies
usmunicipal@veolia.com
www.veoliatwtertech.com