MEMDENSEW NB

Paving the way for efficient membrane performance at City of Detroit Lakes

TODAY'S PRESENTERS

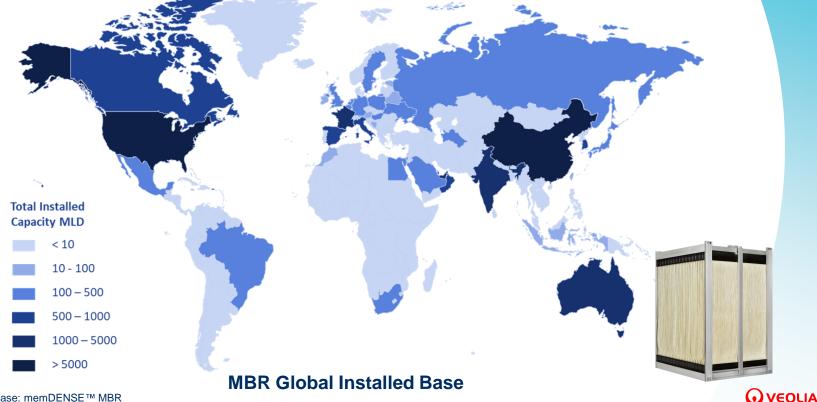
Chris Shaw Lead Researcher Veolia

Susan Danzl Project Manager SEH Inc

Implementation

Demonstration Results

Operations Experience

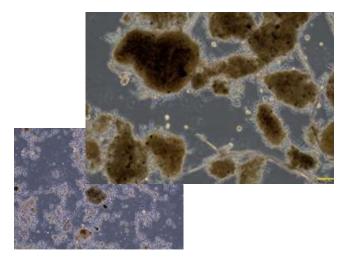


membense Mbr Technology overview

MEMBRANE BIOREACTOR

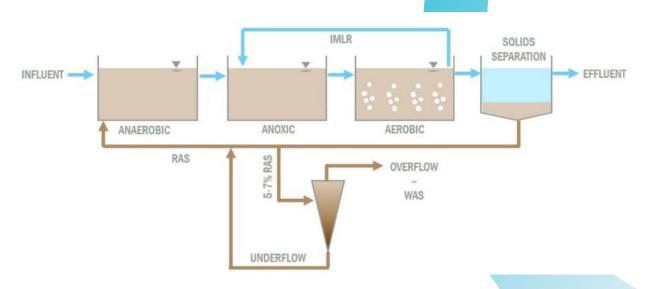
Delivering superior quality in the smallest footprint

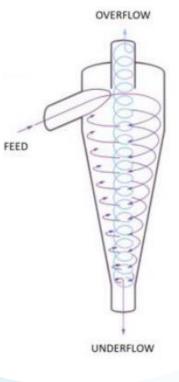
memDENSE MBR reduces operating cost by tailoring mixed liquor characteristics to optimize membrane & biological performance


memDENSE MBR Combining 2 proven technologies

ZeeWeed[™] MBR

Densification





DENSIFICATION What is it?

Select dense, desirable sludge to improve solids settling

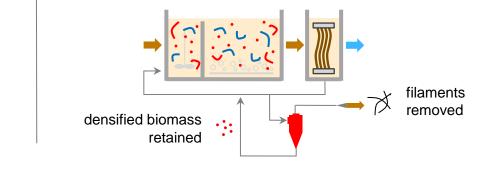
From WRF Project 5130 - A State of Knowledge: Exploring the Densification Continuum

CONVENTIONAL MBR vs. memDENSE MBR

filaments retained

うで

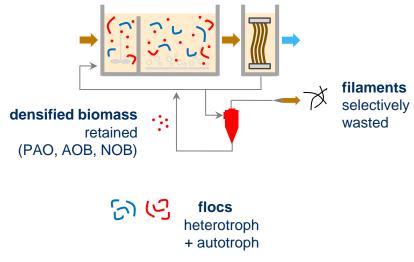
flocs


CONVENTIONAL MBR

uncontrolled MLSS characteristics limit MBR performance

filaments

tailored MLSS characteristics unlock MBR potential


: densified biomass

memDENSE MBR Efficient coupling, 2 main principles

mem**DENSE MBR**

tailored MLSS characteristics unlock MBR potential

SELECTIVE WASTING

removal of light biomass fraction

- foulants, colloids, pin floc
- nuisance bacteria, filaments

DENSIFICATION

retention of dense biomass fraction

- improved filterability
- nutrient removal specialists
 - PAO = Polyphosphate-accumulating organisms
 - AOB = Ammonia-oxidizing bacteria
 - NOB = Nitrite-oxidizing bacteria

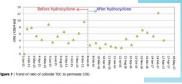
SUPPORTING RESEARCH Densification & granulation with MBR

bridging size, fraction & pore blocking w/ membrane filtration

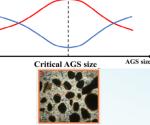
Donnaz et al, 2020 showed that biomass densification improves sludge settling of clarifiers w/ bio aggregates size distribution 200 - 500 um (1000 max)

Nogushi et al, 2018 showed that

MBR mixed liquor quality can be enhanced by hydrocyclone. MBR performance improved with hydrocyclone, due to removal in Overflow of lighter flocs and colloidal fraction from the mixed liquor


Wenxiang Zhang et al, 2018 demonstrated the existence of a critical AGS size (1~1.2 mm) above which membrane fouling is increased and pore blocking higher than cake layer


research background on densification & AGS with MBR


- more stable & lower fine colloids with HC
- less membrane
 CIP with HC

- higher fouling rate > 1-1.2 mm,
- more fines = more pore blocking

AGS-MBR

memdense Mbr IMPLEMENTATION AT CITY OF DETROIT LAKES

CITY OF DETROIT LAKES, MINNESOTA

Phosphorus | target: 0.066 mg/L

Approach:

- Biological w/Chemical Trim
- Chemical

Nitrogen | target: 7 or 10 mg/L

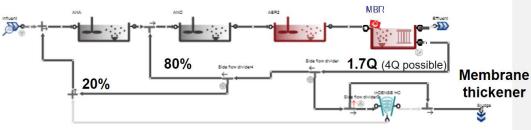
Approach:

Biological

CITY OF DETROIT LAKES MBR Why implement densification?

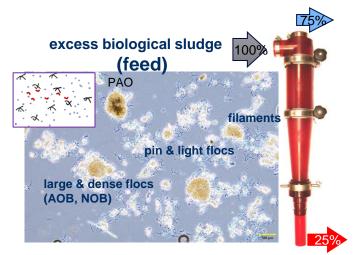
Improving Performance

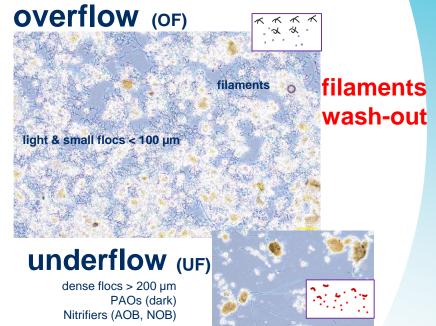
- Significant foaming
- Seasonal permeability struggles
 - Spring melt high flows
 - Multiple events challenge the system: Surfactant, Oil, WWF Peak
- Strengthen phosphorus removal
 - bioP plant with 0.066 mg/L discharge limit
 - increase PAO resiliency to chemical cleans
- Increase resilience to seasonal changes
 - steep temperature drop, spring melt/precipitation
 - Winter (temp), spring (high flows) & summer (tourism) different operation regimes



memDENSE MBR AT DETROIT LAKES 18+ months experience

memDENSE installation at Detroit Lakes. MN. USA


1.2 MGD ADF, 5 MGD PHF


- Waterline:
 - Equalization tank
 - Pretreatment (grit removal)
 - ZeeWeed-MBR (A2O), UV disinfection

(.) VEOL

- Sludge Line:
 - Membrane thickener (ZeeWeed)
 - Aerobic digestion
 - Dewatering by centrifuge

memDENSE MBR Selective wasting & sludge densification

WEF eShowcase: memDENSE™ MBR

memDENSE MBR 1.5-year look back on performance

January 2023 to today (2024)

- Filaments washed-out, foam disappeared
- Densification increased (DI
 from 35 to 65-80%)
- Reduced SVI \downarrow to 50 mL/g
- 1 **50%** Chem-P consumption (BioP boost)
- **J 20%** Membrane cleaning chemicals

In-progress

- Oxygen transfer improvement
- · Benefits to sludge treatment and handling
- Optimizing densification

memDENSE MBR Selective wasting

After memDENSE implementation

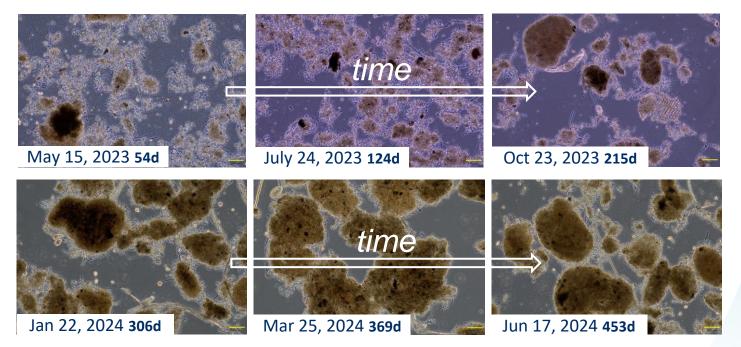
since January 2024



foam disappeared

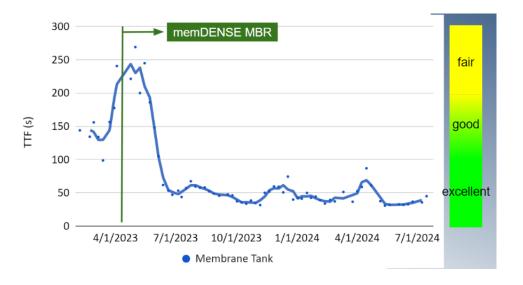
18

memDENSE MBR Macroscopic mixed liquor change



memDENSE MBR Morphology

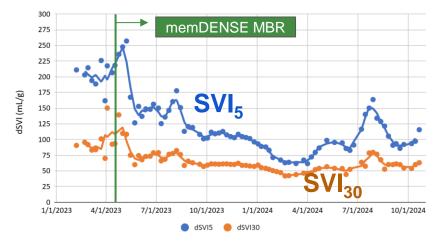
memDENSE Biology - Microscope follow-up - Underflow


membense Mbr Demonstration Results

WEF eShowcase: memDENSE™ MBR

TTF stabilized at 50 sec

Time-to-filter (TTF):


- Measurement of the mixed liquor cake layer
- Better cake layer = easier to filter

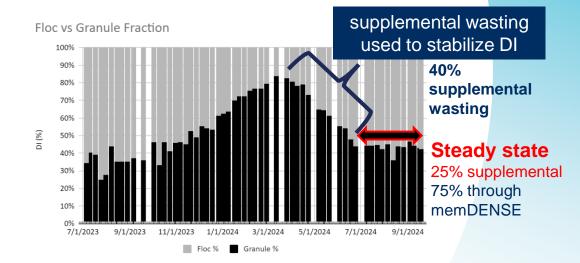
memDENSE MBR Improved sludge filterability

SVI₃₀ stabilized at 50 mL/g

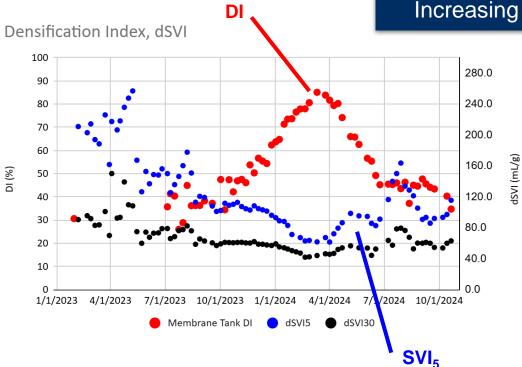
Membrane Tank dSVI

Settling Velocity Index (SVI):

- Speed of sludge settling over 5 and 30 minutes
- Indication of densification's effect on sludge
- Heavier, dense granules settle faster

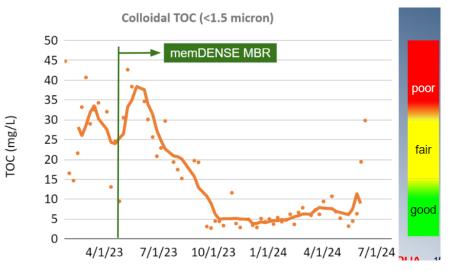


DENSIFICATION INDEX


```
DI = \frac{\sum Total \, Suspended \, Solids > 200 \, \mu m}{\%}
```

 $\Sigma Total Suspended Solids$

DI & SVI₅ Indicators of mixed liquor changes

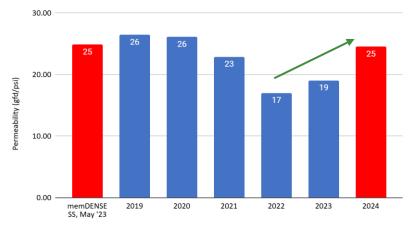

Increasing DI leads to decreasing SVI_{5,30}

Controlling wasting for DI & SVI, achieves optimal filterability

memDENSE MBR Removal of colloidal material (TOC)

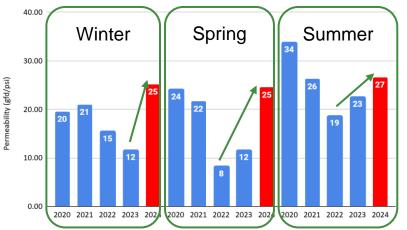
TOC in mg/L

Total Organic Carbon (TOC):


- Fractions smaller than 1.5µm linked to membrane fouling
- Fequires chemical cleaning to recover

With memDENSE: **83% colloidal TOC**

memDENSE MBR Improved TMP & permeability


Annual Permeability

Increased annual average permeability - close to new membrane condition

Increased permeability every season - with less variation between over the year

Seasonal Permeability

memDENSE MBR

OPERATIONS EXPERIENCE

memDENSE MBR Operations insights

- Simple to operate system with very little operator input requirements
 - Yearly/biyearly inspection of approx 30 min
- Biological upset conditions detected quickly and easily in hydrocyclone overflow
 - Detected while already being wasted from the system

memDENSE MBR

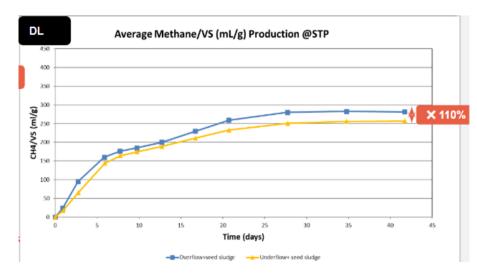
NEXT STEPS

DEMONSTRATING IMPROVEMENT IN OXYGEN TRANSFER EFFICIENCY

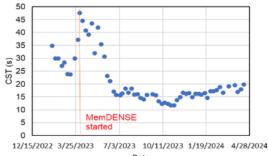
Regular off-gas campaign with floating hood

in partnership with *Pr. Diego Rosso DRH2O LLC*

<u>Real time off-gas measurement</u> with oxygen transfer monitoring column



in partnership with Graham McCarthy *Watergate Environmental Technologies*



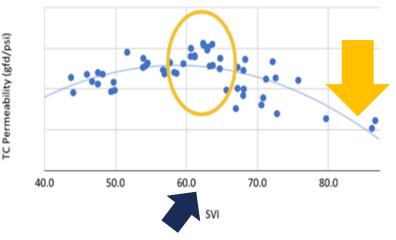
memDENSE MBR Sludge line performance improvement

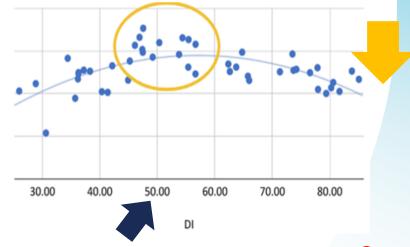
- Improved dewaterability
- Increased Biochemical methane potential (BMP)
 - Potential for 20% increase

Date

memDENSE MBR When is dense too dense?

Climax of permeability observed


at 45-55%DI

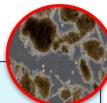

DI vs Permeability - Full test

TC Permeability (gfd/psi)

60-65 SVI₃₀

Aerobic dSVI - Full test

VEOLIA 33


memDENSE MBR

SUMMARY

memDENSE MBR SUMMARY

BIOLOGICAL PERFORMANCE

- \checkmark nuisance foam elimination
- √ increase resilience (biologically stable)
- ✓ better bioP
- \checkmark potential for improved oxygen transfer
- \checkmark potential for improved solids treatment

MEMBRANE PERFORMANCE

- \checkmark reduced cleaning chemicals
- ✓ Iower OPEX
- / resilience
- ✓ potential for longer membrane life

memDENSE MBR = superior plant performance

ACKNOWLEDGEMENTS

City of Detroit Lakes Public Utility

- Rob Bredeson
- Heather Olson
- Erin Haverkamp
- Corey Will
- Drew Downhour

THANK YOU

Chris Shaw

christopher.shaw@veolia.com

Susan Danzl sdanzl@sehinc.com

