SEPTEMBER 4TH, 2024

Sustainable Phosphorus Remova

кеміга

Our Water Experts

RICHARD WATEROUS Sr Account Manager RICARDO COLON Sr Application Specialist

2

кеміга

SUSTAINABLE CHEMICAL PHOSPHORUS REMOVAL

You Will Learn About

→ Consequences of Phosphorus in the Environment

- → Regulatory Pressures to Control Phosphorus
- → Sustainable Management of Phosphorus Discharges

кетіга

What is Phosphorus?

PHOSPHOROUS W

Phosphorous

- \rightarrow Naturally occurring element found in mineral deposits as an inorganic trivalent phosphate ion (PO₄)³⁻
- → Essential to <u>all life</u>on earth
 - \rightarrow Biological Phosphorous
 - \rightarrow Adenosine triphosphate (ATP)
 - \rightarrow Deoxyribonucleic acid (DNA)
 - \rightarrow Phospholipids (cell membranes)
 - \rightarrow Mineral component of bones & teeth

кетіга

The Impact of Excess Phosphorus

PHOSPHOROUS W

Excessive Phosphorous

Sources:

- → Agricultural Fertilizers
- → Municipal Wastewater

Unintended Impacts:

- \rightarrow Toxic harmful algae blooms (HAB)
- \rightarrow Algae w/excessive biomass
- → Water taste & odor problems
- → Dissolved oxygen(DO) depletion/ hypoxic zones
 - < 5 mg/L DO stressful to fish
 - < 3 mg/L DO no fish
 - < 1 mg/L DO no life

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics. AeroGRID, IGN, and the GIS User Community (Image credit: USGS) 7

кетіга

MISSISSIPPI RIVER/GULF OF MEXICO HYPOXIA TASK FORCE

https://www.epa.gov/ms-htf/reports-point-source-progress-hypoxia-task-force-states

кетіга

PHOSPHOROUS WEBCAST

Hypoxia Example

Tributaries to Mississippi/Atchafalaya River Basin (MARB)

Encompasses watersheds with significant contributions of nitrogen & phosphorus to the surface waters of the MARB

Gulf of Mexico hypoxic (dead) zone is the largest in the USA

- \rightarrow 2017 it covered 8,494 square miles
- \rightarrow area contains ~ half of the nation's coastal wetlands
- → Supports fisheries generating \$1 billion/year

Chesapeake Bay - also a major dead zone

 \rightarrow Each summer > 40% of area and 5% of volume

Phosphorus Limits

PHOSPHOROUS W

WHAT IS BEING DONE TO COMBAT EXCESS PHOSPHORUS?

Legislation Regulation Enforcement Roadmap

Kemira

кеміга

PHOSPHOROUS WEBCAST

DESIGNATED USES

National Water Quality Criteria

Numerical limits on toxic chemicals, nutrients, bacteria, heavy metals & other contaminants

- \rightarrow Drinking water
- \rightarrow Fishing
- \rightarrow Recreational water
- → Habitat preservation & endangered species protection

Impaired Water - if contaminants exceed water quality standards for a designated use

COMPREHENSIVE NITROGEN AND PHOSPHORUS REDUCTION TARGETS

Phosphorus Limits Example

State of Illinois

- → Current Statewide effluent standard for total phosphorus "Total P" limit = 1.0 mg/L
- \rightarrow May be <u>higher or lower in a specific permit</u>
- → Future effluent limit of 0.5 mg/L Total Phosphorus applicable January 1st, 2030,
- → Exceptions apply, consult with local EPA office or regulatory consultant for site specific requirements

Phosphorus in Wastewater

PHOSPHOROUS WI

WASTEWATER TREATMENT EFFLUENT

Phosphorous Removal

Two removal methods: → Biological treatment → Chemical precipitation

Iron-based removal

кеміга

PHOSPHOROUS QUANTIFICATION

Iron-based Phosphorous Removal

Total-Phosphorous - removed by physical removal & chemical precipitation

Total P = Insoluble + Soluble fractions

Insoluble: Organically bound particulate phosphorous \rightarrow physical removal

Soluble (phosphate):

Inorganic ortho phosphate + polyphosphate \rightarrow chemical precipitation

Kemira

PHOSPHOROUS REMOVAL US

Sustainable

- \rightarrow Reduction of H₂S gas
 - Odor & corrosion con increased equipment
- → Struvite control
- ightarrow Dryer cake solids
 - Less solid transport in CO₂ emissions
- ightarrow Cost savings
 - Reduced solid disport
 - Reduced chemical t
 - \rightarrow Reduction in dewaterin

кеміга

PHOSPH

WATER RECLAMATION FACILITY NORTH LAS VEGAS, NV

Case Study

Issue:

Increased phosphorous due to hot weather

Solution:

Add ferric chloride above 82°F

Result:

- 20-25% reduction in phosphorous discharges
- ~7% increase in cake dryness
- ~ \$100,000 annual savings in biosolid process cost

кетіга

Kemir

Thank You

кеміга

For more information, contact your Kemira Account Manager or CommercialSupport.I&W@kemira.com