Design, Startup and Operation of Utah's First Deamonification System

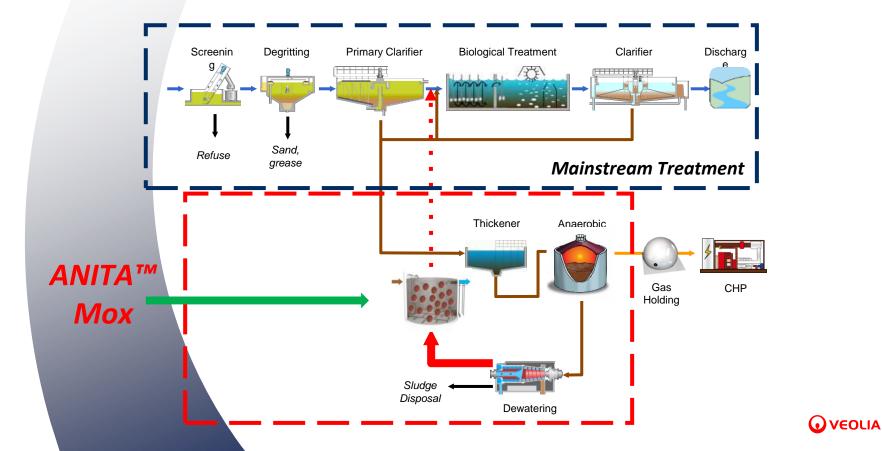
August 8, 2024

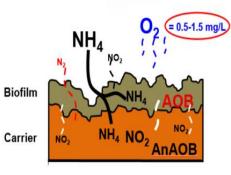
Copyright© 2024 Veolia Water Technologies, Inc. May not be reproduced without permission. Confidential Information.

Meet The Presenters

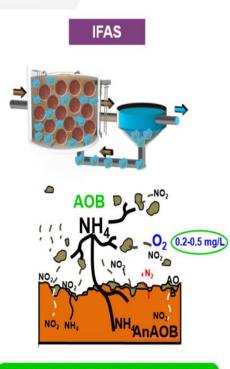
Dustin Gloor Process Coordinator Central Valley WRF

Rodrigo Lara Regional Sales Manager Veolia Water Technologies





ANITA™ MOX For Centrate / Filtrate Treatment

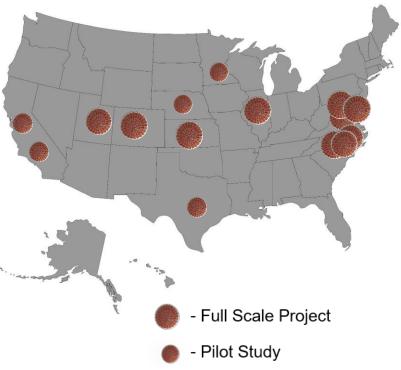


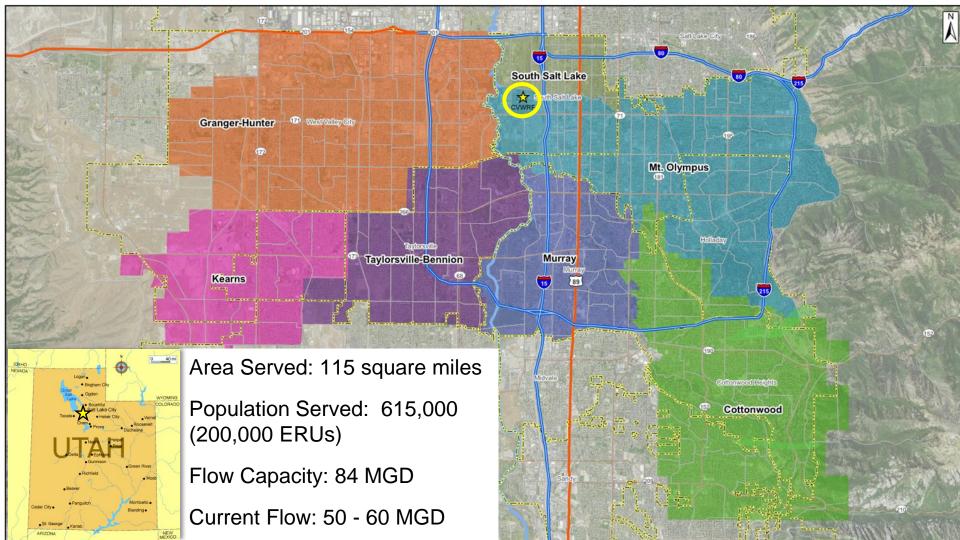
Two Process Options For Flexibility & Expansion

AOB in biofilm = NO₂- limitation

AOB in flocs = less NO₂- limitation

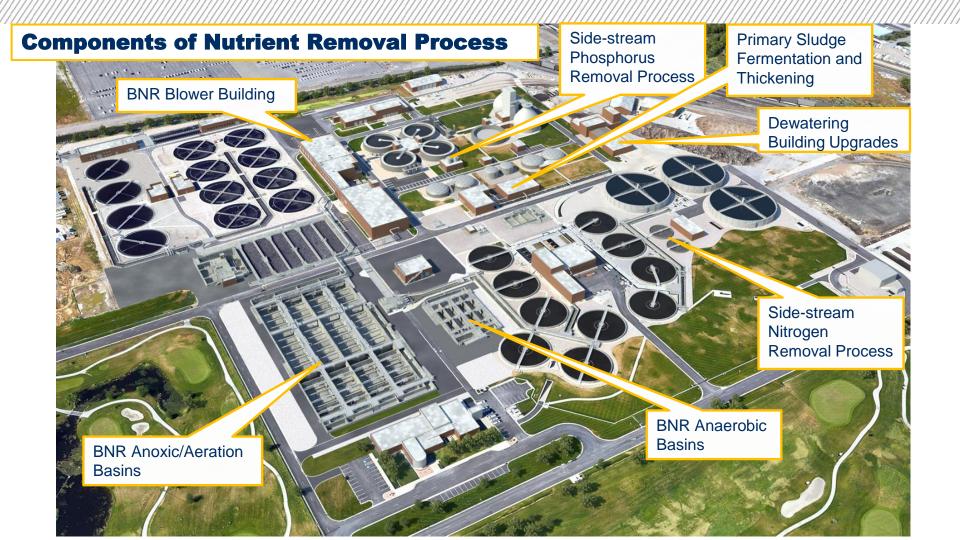
Biofilm Technology Proven To Be Simple, Stable & Robust



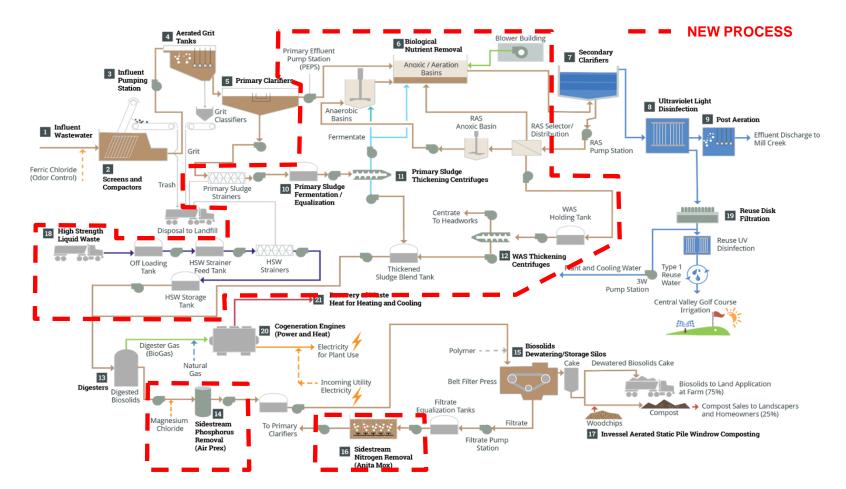

- Operator friendly technology
- Resilient, works with flexible dewatering schedules
- Minimal operation and maintenance requirements
- Biofilm technology, significant lower risk of anammox washout
- Tolerate high range of TSS, polymer, DO, pH, NO2 residual etc.
- Greater protection from shocks / toxicity
- Reuse existing tanks, wide water depth (10-30ft) and geometry
- Capacity increase by adding more media, phased approach for expansion

A Decade Of Experience With 40 Projects Worldwide

- James River TP, VA (HRSD) (2014) 550 lbs/day
- South Durham WRF, NC (2015) 700 lbs/day
- Denver Metro, CO (2017) 9,000 lbs/day
- Howard County MD (2018) 2,000 lbs/day
- Tomahawk Creek, KS (2021) 950 lbs/day
- WSSC, MD (THP, 2022) 5,700 lbs/day
- Central Valley, UT (2022) 2,000 lbs/day
- North Durham NC (bid) 700 lbs/day
- Raleigh Neuse NC (THP, bidding soon) 3,400 lbs/da
- Fresno-Clovis RWRF (pre-selected 2023)
- Other Preselected Projects



CVWRF Nutrient Program Timeline


2015-2026

2015	2016-17	2018-19	2020	2021-22	2023-24	2024-26
Utah Adopts Technically Based Phosphorus Effluent Limits Rule	Investigation and selection of P removal alternative Pilot Testing of Selected Process - Biological Phosphorus Removal (BNR)	Preliminary and Final Design of BNR Regulatory Approvals	Construction started on BNR Basins and Blower Building Projects Design of Airprex side-stream phosphorus (SSP) Design of Anitamox side-stream Nitrogen (SSN)	Started on SSP and SSN Projects Construction started on Primary Sludge Fermentation and Thickening Project	Construction Started Dewatering Bldg. Upgrades SSN and SSP Start- up Q4 2023	Blower Building Start-up planned for Q3 2024 BNR Start-up planned for Q3 2025


New BNR – Westside Process with PS Fermentation, SSP and SSN

Nitrogen Mass Balance in a BNR Process

Why do SSN Removal?

- Typically, 15 to 20% of Total TKN Load returned to influent in filtrate as Ammonia
- This Ammonia must be nitrified and then denitrified for successful BNR
- Nitrification and denitrification consumes oxygen and carbon

(•) VEOLIA

Process Benefits of SSN and SSP to the Design of CVWRF BNR Process

Baseline BNR (w/o SST)	BNR with SST	Difference	% Reduction
25.6	21.6	4.00	16%
0.50	0.17	0.33	66%
236	108	128	54%
57,000	40,000	17,000	30%
60,400	45,900	14,500	24%
24,898,000	17,858,000	7,040,000	28%
	(w/o SST) 25.6 0.50 236 57,000 60,400	(w/o SST)BNR with SST25.621.60.500.1723610857,00040,00060,40045,900	(w/o SST)BNR with SSTDifference25.621.64.000.500.170.3323610812857,00040,00017,00060,40045,90014,500

Financial Benefits of SSN to BNR Process

Annual Cost	Bas	eline BNR (w/o SST)	BNR with SST	Savings
WAS Treatment and Disposal	\$	3,528,950	\$	2,680,578	\$ 848,372
Aeration and Pumping Power	\$	2,420,000	\$	1,791,000	\$ 629,000
Total Annual Cost	\$	5,948,950	\$	4,763,578	\$ 1,185,327
Capital Cost					
BNR Basins and Aeration	\$	121,500,000	\$	98,300,000	\$ 23,200,000
WAS Thickening	\$	2,500,000			\$ 2,500,000
Anammox			\$	21,000,000	\$ (21,000,000)
Total Capital Cost	\$	124,000,000	\$	119,300,000	\$ 4,700,000
25 Year NPV					
Years		2.	5		
Discount Rate		3.5%	6		
Present Value Capital Savings	\$	4.7M			
Present Value of Operational Savings	\$	19.5M			
Total NPV Savings	\$	24.2M			
					-

SSN Vendor Pre-Selection Process

Criteria	Weight	Evaluation	Weighted Scores
Experience	15	Higher scores will be given to manufacturer's with: longer installation history, more installations at capacities similar to this project, and positive references from existing installations.	75 points possible
Design and Performance	35	Higher scores will be given to manufacturer's whose units are deemed to perform more favorably at CVWRF. Systems that demonstrate a well developed and robust/resilient design with site specific considerations will be considered more favorable.	175 points possible
Maintenance	20	Higher scores will be given to manufacturer's whose units are deemed to require less maintenance or where the maintenance is easier to perform.	100 points possible
Life Cycle Cost	30	Owner and Engineer will determine the total capital and O&M cost from information found in the Bid Form. Higher scores will be given to bids with lower life cycle costs.	150 points possible

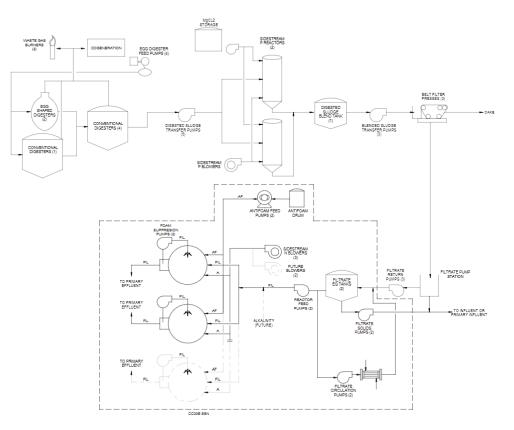
VEOLIA 15

Anammox Technologies Comparison

	ConDEA™/Demon	ANITA™Mox	AnammoPAQ™
Flow	Continuous	Continuous	Continuous
Aeration	Intermittent	Continuous	Continuous
Anammox bacteria form	Granules	Biofilm on media	Granules
Method of retaining Anammox bacteria	Batch settling + microscreen retention of granules	Media retention screens (coarse screens)	Lamella plate settler inside reactor
Worldwide installations	>65 installations - Mostly municipal	>25 installations - Mostly municipal	>45 installations - Mostly industrial - Mostly in China

ANITA Mox Process Design

Design Parameters


		Values				
Parameter	Units	Startup	Interim Conditions	2035 Average Day	2045 Maximum Month	
Flow, Design	MGD	0.3 - 0.5	0.5	0.57	0.62	
sCOD	mg/L	90-125	125	125	150	
TSS	mg/L	< 50				
NH ₄ -N	mg/L (ppd)	300-450 (1,200)	300-450 (2,100)	1,500 (7,135)	1,550 (8,020)	
Alkalinity	mg/L	>5000				
Temp, Min	°C	> 20				

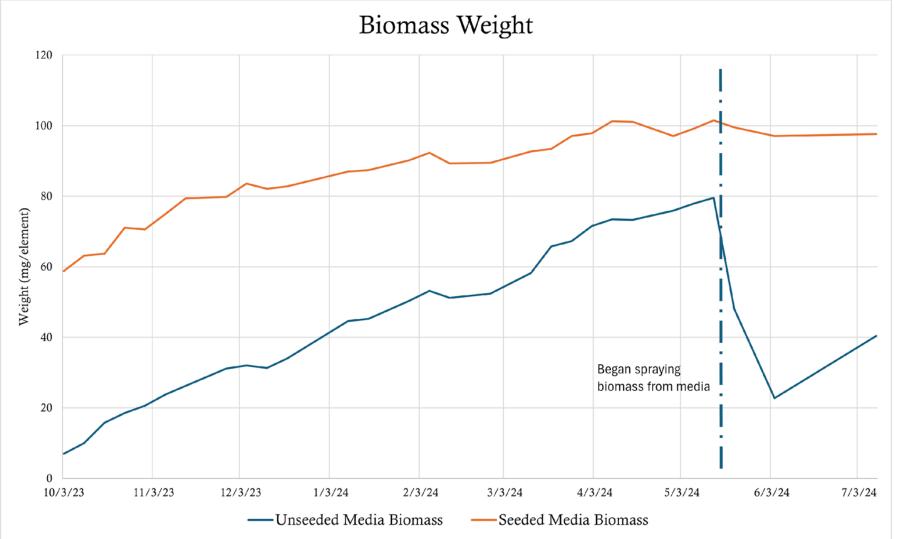
Performance Requirements: >75% NH3 removal >70% TIN removal

ANITA Mox Process Design

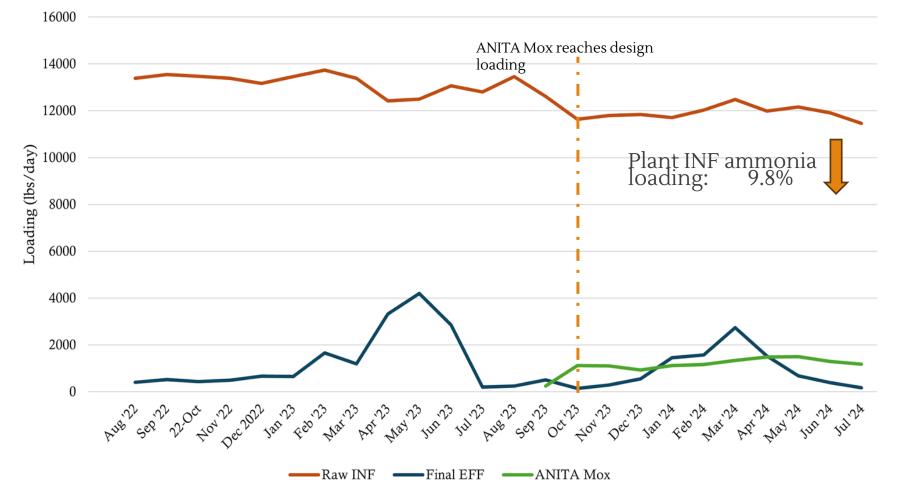
Parameter	Units	Value
No. Reactors		2 plus 1 future
Reactor Dia.	Ft.	55
Liquid depth	Ft.	21
Reactor Volume, each	Gal.	380,000
Media Fill Vol.	Cu. Ft.	15,000
No. Blowers		3 plus 2 future
Blower size	Hp./SCFM	60/1,000

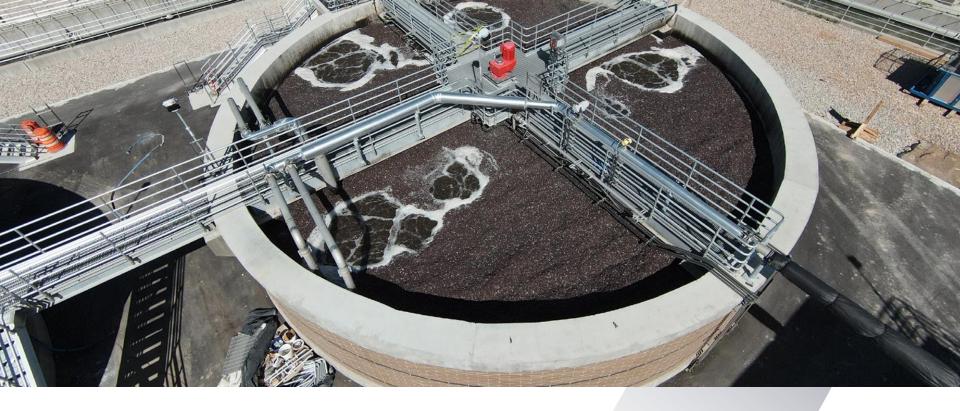
Process Startup

2 Months


6 Months

Biomass Growth


- 5% seed media delivered from Biofarm
- 14,250 ft³ virgin media
- 750 ft³ seed media



Ammonia Loading

Operational Challenges

High TSS loads:	>20,000 mg/L	_
Temperature:	< 26°C	
Foaming:	Water-based defoamer	
Media Rafting	Altered aeration	YEOLIA

For More Information:

Rodrigo Lara rodrigo.lara@veolia.com

