

Trends in Mine Water Management

August 2024

Speakers

Eric Schraml, P.Eng. Industrial National Market Sector Lead

- 30+ years of experience in industrial project delivery
- Specializes in the mining sector

Lucy Pugh, P.E., BCEE Vice President, Global Industrial Water Practice Director

 35+ years of experience in industrial wastewater treatment and reuse Agenda

Trends in the Mining Industry	Mining Water Management	Case Studies			
Clean energy transition Novel mining approaches Global mining activity	Water Use and Water management Water quality considerations	Solar Glass Base Metals Mining Giant Mine			

Trends in the Mining Industry

Impacts of Clean Energy Transition

- Transition to clean energy sources increases the demand for various metals, including copper, nickel and zinc
- Electric vehicles and electronic devices also drive the demand for base metals and rare earth elements
- Copper demand expected to increase by 50% in next 20 years (World Bank)

Element	Wind	Solar photovoltaic	Concentrated solar power	Hydro	Geothermal	Energy Storage	Nuclear	Coal	Gas	Carbon capture and storage
Aluminum	>	0, 0	0 S	<u> </u>	U		2	0	0	9 U
Chromium										
Cobalt										
Copper										
Graphite										
Indium										
Iron										
Lead										
Lithium										
Manganese										
Molybdenum										
Neodymium										
Nickel										
Silver										
Titanium										
Vanadium										
Zinc										
Total	10	8	2	8	6	11	11	9	8	6

Increasing Mineral Demands - New Mining Approaches

- Shift from oxide ores to sulfide ores
- Metals extraction from non-conventional sources
 - Brine recovery
 - Legacy mine tails reprocessing
 - Minerals and metals recovery from ewaste and other wastes
- Optimizing water management and reuse

Water and Mining

Water is essential for mining operations

- Mining dust suppression, cleaning equipment
- Processing wet grinding, washing, flotation, leaching
- Transportation pumping tailings and products
- Utilities cooling water, pollution control

Water is impacted by mining operations

- Acid rock drainage from mine waste
- Residual chemicals in mine waste
- Tailings management
- Diversion of streams

Increased Focus on ESG

Competition for fresh water in water-scarce areas

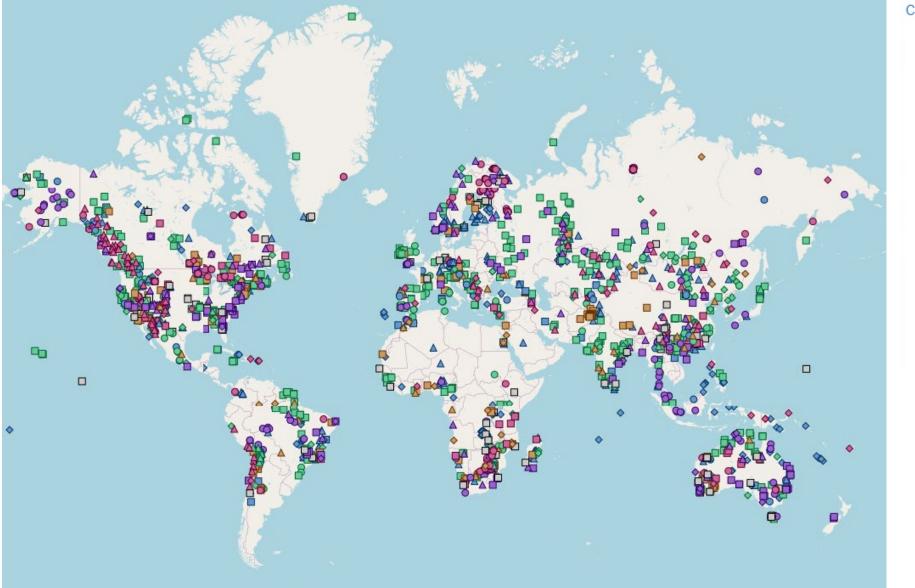
Water management in coastal areas driven by climate change

Increasingly stringent water discharge requirements

- Suspended solids
- Dissolved solids
- Sulfate
- Selenium
- Mercury
- Other substances of concern

Social awareness – minimize community impacts

Global Mining Activity – Major Mineral Deposits



Major mineral deposits

- A Nickel
- ▲ Iron △ Aluminum
- Copper
- ▲ Lead-Zinc
- PGE
- Gold
- Rare Earths
- Oiamond
- Clays
- Potash

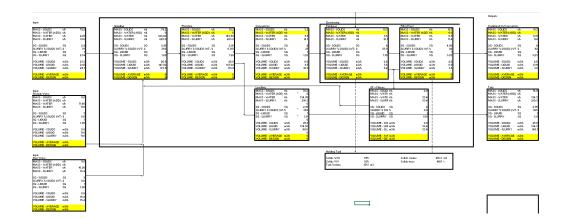
Source: USGS

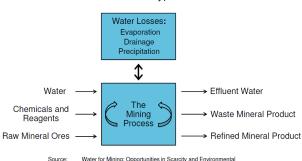
Global Mining Activity – Critical Minerals

Critical minerals

- Antimony
- Barite
- A Beryllium
- Cobalt
- Fluorite
- Gallium
- 🔺 Germanium
- Graphite
- Indium
- Lithium
- Manganese
- Niobium and Tantalum
- Platinum-Group Elements
- Rare-Earth Elements
- A Rhenium
- Tellurium
- Tin
- Titanium
- Vanadium
- Zirconium and Hafnium
- Multiple critical minerals

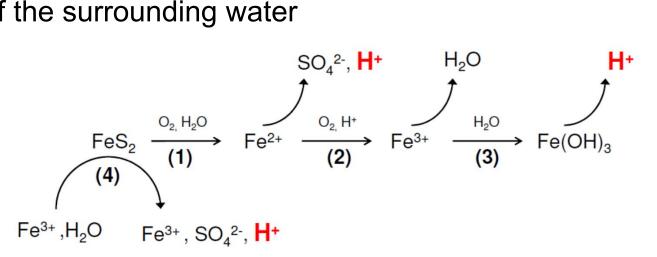
Source: USGS




Mining Water Management

Water Use and Management

- Surface / stormwater
 - Prevent contamination / manage dilution
- Mine dewatering water / waste rock impact (AMD)
 - Water generated naturally
 - Underground production (tools, service garages, dust suppression)
- Raw water intake
 - Enabling infrastructure (housekeeping, maintenance activities, fire suppression, environmental controls, thermal processes)
 - Process water
- Process tails
 - Slurry
 - Dry stack
- Reclaim water
 - Process make-up water



Water Balance in a Typical Mine

Acid Mine Drainage (AMD) Considerations

- Exposed metal sulfides in the presence of water and oxygen react to produce very low pH
- Ferric iron can be self-catalytic, perpetuating acidic conditions
- Other factors that influence acid formation:
 - Type of metal sulfide; pyrite is most common
 - Surface area / size distribution of the exposed metal sulfide
 - Alkalinity of the surrounding rock (i.e. limestone)
 - Exposure to oxygen and water (surface rock, buried, etc.)
 - Presence of biological catalysts (Thiobacillus bacteria)
 - Flushing frequency of the surrounding water
 - pH

Water Quality Considerations

- Underground water for production OH&S considerations
- Process chemistry (bleed requirements) this limits reclaim water use and increases raw water draw
- Process losses (water lost to product, water lost to enabling infrastructure, utility water)
- Potable water (personnel, laboratory, process analyzers)

							Reclaim	Water					
ъЦ	Temp.	Cond.	Turbidity	Total SS	Total Cu	OB/Zn	Total Zn	Total Fe	Total Pb	Total Cd	Total As	Total Mn	Total Ni
рН	deg C	S/m		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
1.20	20.0	0.1524			0.010	0.20						0.144	NU.UU
6.83	21.8	0.1308			0.018	0.23	0.322	0.224	<0.1	<0.007		0.209	<0.05
7.63	23.7	0.1286			0.013	0.2	0.258	0.151	<0.1	<0.007		0.094	<0.05
7.05	22.3	0.1715			<0.013	0.17	0.248	0.161	<0.1	<0.007		0.082	<0.05
7.07	19.7	0.1335			<0.013	0.24	0.24	0.152	<0.1	<0.007		0.068	< 0.05
6.89	19.7	0.133			<0.013	0.19	0.248	0.174	<0.1	<0.007		0.071	< 0.05
6.67	20.9	0.1337			0.013	0.19	0.258	0.215	<0.1	<0.007		0.081	< 0.05
6.66	21.6	0.127			<0.013	0.18	0.242	0.173	<0.1	<0.007		0.101	<0.05
7.00	20.2	0.1369			<0.013	0.21	0.252	0.224	<0.1	<0.007		0.099	<0.05
6.86	21.6	0.1494			<0.013	0.26	0.259	0.181	<0.1	<0.007		0.103	<0.05
6.21	21.9	0.1284			<0.013	0.18	0.27	0.156	<0.1	<0.007		0.122	<0.05
6.44	21.6	0.125			0.014	0.19	0.256	0.282	<0.1	<0.007		0.127	< 0.05
7.17	17.0	0.1376			<0.013	0.23	0.273	0.102	<0.1	<0.007		0.086	<0.05
7.67	21.7	0.1366			<0.013	0.22	0.263	0.111	<0.1	<0.007		0.062	<0.05
6.26	22.2	0.1294			<0.013	0.24	0.276	0.07	<0.1	<0.007		0.06	<0.05
8.06	18.2	0.1261			<0.013	0.22	0.273	0.077	<0.1	<0.007		0.038	<0.05
6.45	18.7	0.1356			<0.013	0.22	0.254	0.079	<0.1	<0.007		0.039	<0.05

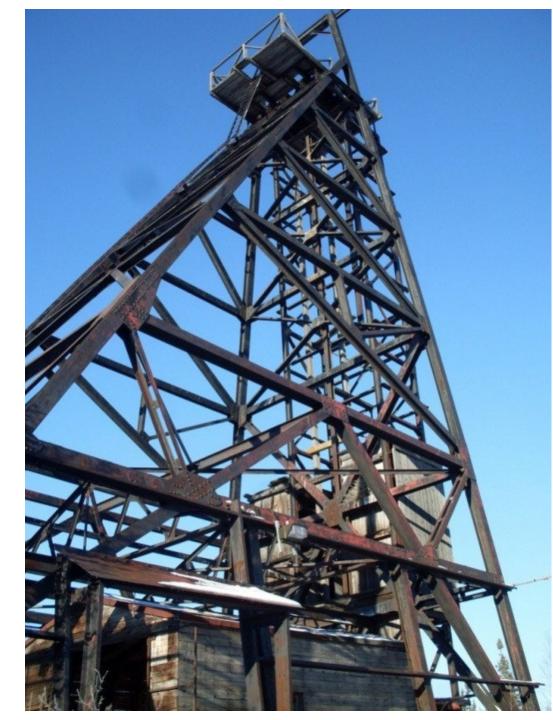
Mine Process Water Treatment Technologies

Technology	Examples	Application				
Neutralization	Lime or limestone addition	Acid rock drainage				
Solids separation	Clarifiers, dissolved air flotation	Volume reduction of tailings				
Passive treatment	Wetland systems	Polishing				
Metals removal	Sulfide precipitation, biological filters, ion exchange or sorbent media	Metal recovery – saleable product				
Membrane filtration	Microfiltration, ultrafiltration, reverse osmosis	Water reuse				
Evaporators and concentrators	Brine concentrators, crystallizers, atomizers	Zero liquid discharge				
Thickening and dewatering	Paste thickeners, pressure filters	Volume reduction of tailings				
Cyanide neutralization	Alkaline chlorination, hydrogen peroxide	Gold processing effluent				

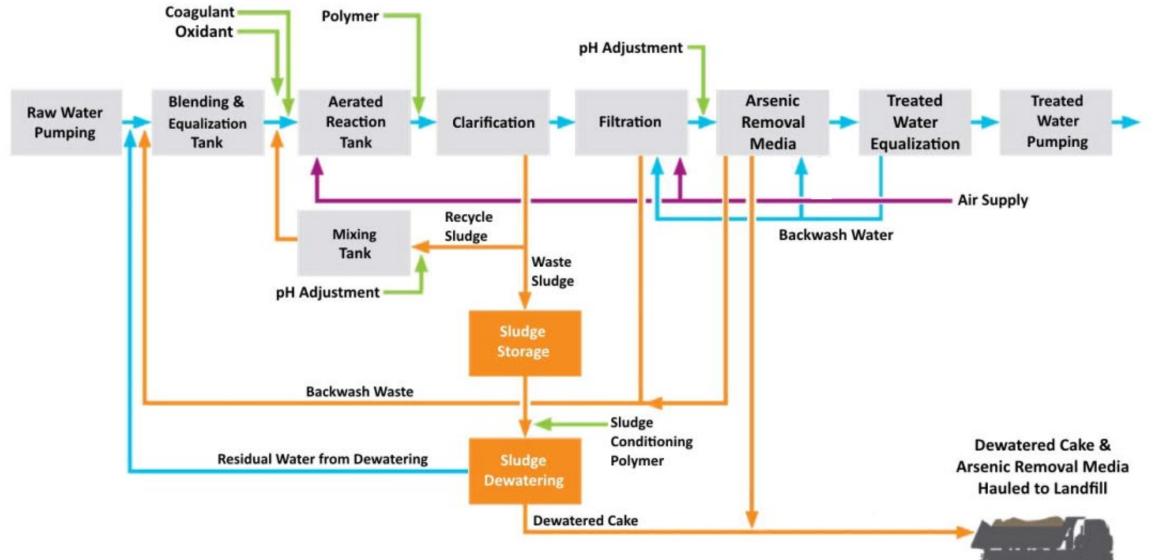
Case Studies

Solar Glass

- Sensitive area (adjacent park lands)
- Indigenous community impacts
- Project targets:
 - Zero discharge permit
 - Make-up water for water lost to product only
 - Product quality achieved with mechanical process methods rather than chemical treatment to eliminate the need for discharge


Base Metals Mining

- Complexities:
 - Stormwater management from adjacent areas (surges)
 - Spring melt surges
 - Bulk conditioning prior to discharge (diluted with surge waters)
- Tactics
 - Diversion to old mine workings
 - Diversion of unimpacted surface dilution
 - Evaporation strategies
 - Flow buffering in conditioning areas
 - Re-processing to neutralize tails and recover trapped metals



Giant Mine Water Treatment

- 50 years of operation; > 7 million ounces of gold
- 2,300 acres in Yellowknife, NT
- 8 open pits, 4 tailings ponds, 100 buildings
- Arsenic trioxide dust stored underground and pervasive throughout the site.
- Flooding of the underground through inflow and groundwater infiltration created a large, contaminated mine pool.
- Receding permafrost contributed to additional groundwater movement and seepage.

Giant Mine Water Treatment

AECOM

Giant Mine Water Treatment

Summary

Summary Remarks

Increased demand for base metals and rare earth elements

- Energy transition
- Electric vehicles and electronic devices

Water stewardship

- Regulatory safeguards
- Improved awareness of long-term impacts
- Focus on reducing water discharges

Innovations

- Metals/minerals recovery from unconventional sources
- Technological advancements for neutralization and recovery of trapped resources in tails

Eric Schraml, P.Eng. eric.schraml@aecom.com +1 587 334 3285

Lucy Pugh, P.E., BCEE <u>lucy.pugh@aecom.com</u> +1 616 450 0127

