Veolia Solutions Enable Customers to Achieve Sustainability Goals

> Moderator: Katie Peach – Veolia WTS Speaker 1: Lianna van der Zalm – Veolia WTS Speaker 2: Alex Waite – City of Santa Monica

- 1. City of Santa Monica Overview Indirect Potable Reuse Project
- 2. GHG Quantification Methodology
- 3. City of Santa Monica Project Quantification
- 4. Food and Beverage Water Reuse Project Quantification
- 5. Anaerobic Digestion Facility Project Quantification
- 6. Question Period

Sustainability Goals

- Interrelated Impacts:
 - Emission reduction
 - Water conservation
 - Waste reduction
- All levels of government
 + private sector work

towards goals

City of Santa Monica Sustainable Water Infrastructure Project

City of Santa Monica – Water Resources Division

93,000+ residents **2,700+** commercial customers Drinking water and fire protection

groundwater (local) surface water (MWD)

Sewer collection and recycled water

9 million gallons

of high-quality drinking water daily

14 million gallons

of wastewater captured and delivered for treatment each day **77,000 gallons** per day of recycled water

4 water storage reservoirs

totaling 40 million gallons

Goals of the City's Sustainable Water Master Plan

- Diverse, sustainable, & drought resilient water supply to support a sustainable community
- Reduction of energy footprint to support carbon reduction goals for the City
- Long term cost benefits for rate payers

Integrated Approach to Maximize Local Water Resources Imported **Potable Water** To City of Wastewater Water from Los Angeles MWD Hyperion Arcadia WTP Charnock Recycled Well Field Water **SMURRF**

Olympic Well Field

Sustainable Water Infrastructure Project (SWIP)

SWIP's Multiple Benefits

- Improves beach water quality
- Provides EWMP/MS4 compliance
- Drought resilient water supply
- Diversifies City's water supply portfolio
- Increases recycled water production
- Augments local groundwater supply
- Creates ~1,600 AFY of local water supply for the City

SWIP Advanced Water Treatment Facility (AWTF)

Process	Virus	Cryptosporidium	Giardia
MBR	1.0	2.5	2.5
Cartridge Filters	-	2.0	2.5
RO	1.5	1.5	1.5
UV-AOP	6.0	6.0	6.0
Chlorine	5.0	-	-
Total	13.5	12.0	12.5
Required for Title 22 GRRP	12.0	10.0	10.0

Santa Monica Urban Runoff Recycling Facility (SMURRF)

UF

- Originally constructed in 2000 as stormwater BMP
- Provides pollution control for MS4 and EWMP compliance
- Produces up to 500 AFY of Title 22 diluent water pending
 WDR/WRR permit amendment for GRRP

First stormwater direct injection project in CA!

First underground AWTF in CA!

00

Greenhouse Gas Assessments

Climate Change: Local Impacts

Greenhouse Gas Reduction Targets

- Regulatory/compliance + voluntary action on climate change
- Municipalities can set procurement targets to match policy goals
- GHG quantification lets us
 measure and track progress

SANTA MONICA PROJECTED CARBON EMISSIONS

(metric tons of carbon dioxide equivalent or mtCO2e)

Quantification Methodology Step-by-Step

Base Case: status quo, current practice **Project Case:** new project, process change

Project 1 – Santa Monica Project Quantification

Project 1 – Santa Monica: Indirect Potable Reuse for Aquifer Recharge Base Case

- Relies on well water and imported freshwater for potable water
- Importing water emits ~0.8 TCO₂eq per million litres, city uses ~10 billion litres per year

Project 1 – Santa Monica: Indirect Potable Reuse for Aquifer Recharge Project Case

Project 1 – Santa Monica: Indirect Potable Reuse for Aquifer Recharge Imported Water Emission Factor

- Emissions from imported water are tied to electricity primarily (pumping, treatment)
- Emission factors are projected to decrease over time (state energy policy - decarbonize)

	2017		
Scope	GHG Emissions (MT of CO ₂ e)	Percent of Total Emissions	
Scope 1	8,875	4%	
Stationary Combustion	1,918	1%	
Fugitive Emissions	71	<1%	
Mobile Combustion	6,886	3%	
Scope 2	194,480	86%	
Electricity Consumption	192,511	85%	
T&D Losses	1,969	1%	
Scope 3	10,598	5%	
Water and Wastewater	184	<1%	
Waste Generation	3,157	1%	
Employee Commute	7,257	3%	
Scope 3 Construction	12,081	5%	
Construction Emissions	12,081	5%	
Total Emissions	226,036	100%	

Project 1 – Santa Monica: Indirect Potable Reuse for Aquifer Recharge Project Case

Project 1 – Santa Monica: Indirect Potable Reuse for Aquifer Recharge Comparison

	tCO2eq/yr		
	Project Case (no		
	Electricity Offsets)	Base Case	
Electricity	1984	0	
Fuel	5	0	
Imported Water	0	793	
Chemical Use	775	0	
Totals	2765	793	

- Main cause of emissions is from the electricity usage
- Residual waste from the AWTF and SMURRF are sent to wastewater treatment, would go there in the base case also
- Chemical consumption is not regularly tracked or included in GHG assessments for existing facilities

Project 1 – Santa Monica: Indirect Potable Reuse for Aquifer Recharge Comparison

- Electricity is all renewable for the AWTF and SMURRF process
- Southern California Edison: Clean Power Alliance

Project 2 – Food & Beverage Water Reuse System

Project 2 – Food & Beverage Water Reuse System Base Case (No Reuse)

- Pre-existing F&B plant with plans for expansion
- Basis of 2.2 million gallons per day (MGD) potable water use
- Produces low strength, low solids wastewater
 - Wastewater hauled to lagoons on property
 - Capacity limited by available space

Scope boundary

Project 2 – Food & Beverage Water Reuse System Project Case (Reuse)

- MBR/RO treatment
- 1.7 MGD water reuse
 - Reduces potable
 water use
- Decreases WW to land application
 - Reduces Haulage
- Allows for plant expansion

Project 2 – Food & Beverage Water Reuse System Project Comparison

Emissions from MBR/RO
 process offset by haulage

reduction

- Haulage emissions are key
 - Reuse reduces haulage

by ~6,500 tonnes/day &

~7,000 TCO2eq/yr

• >70% Renewable energy grid

Project 3 – Anaerobic Digestion Facility

Project 3 – Anaerobic Digestion Facility Base Case - 60,000 tonnes/year to landfill

- 60,000 tonnes/year organics mixed into garbage collection
- Sent to landfill
- Emits large amounts of uncaptured methane
- <u>25x higher</u> global warming potential (GWP) than CO2

Project 3 – Anaerobic Digestion Facility Project Case - 60,000 Tonnes/year to AD facility

- 60,000 tonnes/year SSO sent to AD facility
- Captures, processes, and repurposes methane emissions as RNG
- Treatment requires additional energy & chemicals
- However, <u>avoids methane</u> <u>emissions</u>

Project 3 – Anaerobic Digestion Facility Project Comparison

- Net emissions impact
 - -66,987 TCO₂eq/yr
- Methane venting emissions need to be avoided!
- >95% renewable electricity grid for the region
 - Lowers emissions for electricity use

Key Takeaways

- As climate change is more prevalent in everyday life, need for change is a must
- All levels of both private and public sector groups need to establish sustainability goals
- Focus on apparent local hazards (i.e. shortage of water) and direct changes
- GHG emission calculations can help determine key issues and potential improvements
- By using multiple factors in facility design/changes, can establish a well-balanced project

Questions?

Lianna van der Zalm: Lianna.vanderZalm@veolia.com

Alex Waite: Alex.Waite@santamonica.gov

