

Thomas R. West Director of Water Resources, Utilities Commission City of New Smyrna Beach Florida tomwest@ucnsb.org

Harold E. Schmidt, Jr., P.E., BCEE South Wastewater Practice Director harold.schmidt@stantec.com

Harrison Fowler Product Developer, Kruger Veolia Water Technologies harrison.fowler@veolia.com

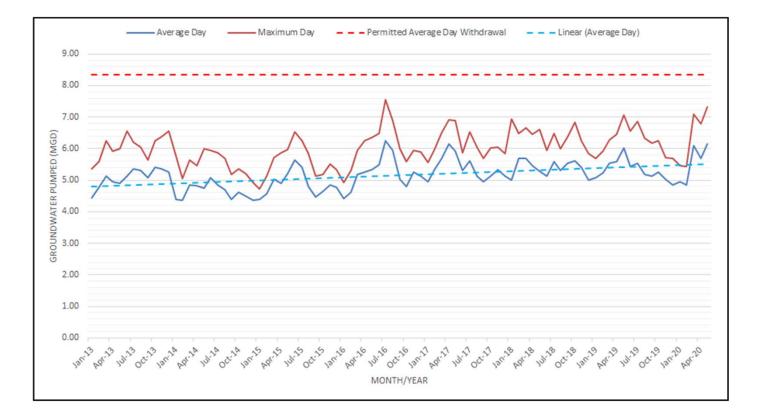
Topics of Discussion

- New Smyrna Beach Utilities Introduction & Project Drivers
- Existing Lime Softening & ACTINA[™] Pellet Softening Process Summary
- Pellet Softening Pilot Testing Results Summary
- Operation & Maintenance Cost Comparisons
- Cost-Benefit & Engineering Analysis
- Questions and Answers

New Smyrna Beach Utilities Introduction - Glencoe Water Treatment Plant

New Smyrna Beach Utilities Water System

- $\circ~$ 23 Raw water supply wells
 - Four wellfields
 - Depth: 180-feet to 364-feet
- \circ 10.368 MGD lime softening WTP
 - Circa: 1978/2005
- 306 miles of water mains (1" to 28")


New Smyrna Beach Utilities Water Resources Service Territory

New Smyrna Beach Utilities District Raw Water Demands Since 2013

Future Project/Upgrade Drivers for Glencoe Water Treatment Plant

Operation and maintenance costs

- Management and disposal of lime sludge
- Labor
- Power
- Chemicals required for treatment of raw water

Raw water supply

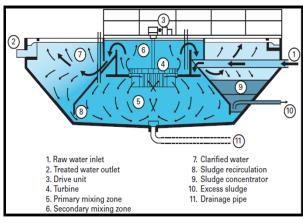
• Quality and quantity

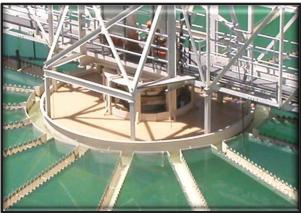
Drivers for Pellet Softening Pilot

An ACTINA[™] Pellet Softening Pilot was conducted at the Glencoe Water Treatment Plant from September 28 - October 14, 2020. Drivers for the pilot included:

- 1. Aging Lime Softening equipment & infrastructure
- 2. Rising costs for lime sludge disposal
- 3. Varied cost for lime
- 4. Decrease in plant footprint
- 5. Decrease cleaning costs associated with lime
- 6. Decrease maintenance costs & frequency
- 7. Longer filter run times

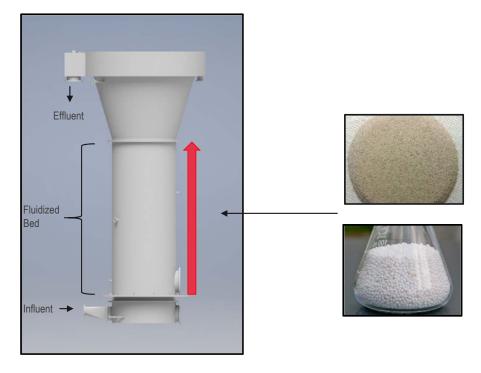
Lime & Pellet Softening Summary


- Existing Lime Softening Process Summary
- ACTINA[™] Pellet Softening Process Summary


Lime Softening & Treatment Overview

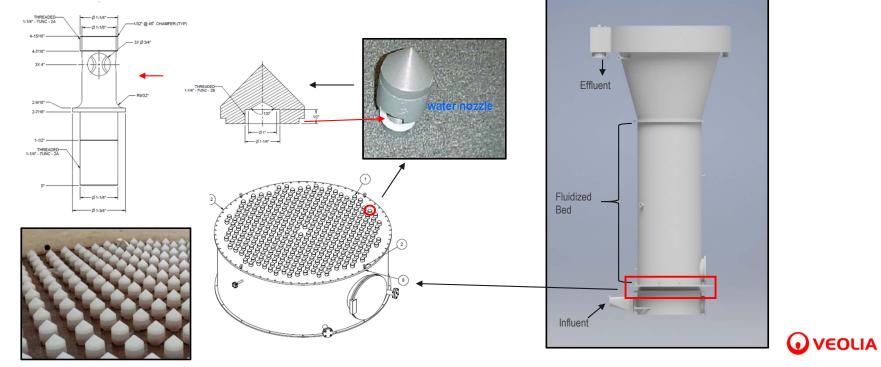
Typical Lime Process Characteristics:

- Operates in pH range of 9.3 and up
- Turbidity (NTU) of 15 30
- Loading rates of ~1.5 2.0 gpm/ft²
 - Large surface area required = Larger footprint
- Mixing area combines raw water, lime & solids
- Relies on maintaining a solids inventory to create surface area for precipitation softening
- Creates sludge to be dewatered and disposed of <40% solids
- Requires auxiliary lime handling equipment (silos, slakers, feed pumps)
- Requires auxiliary sludge handling operations & equipment
- Moving parts on clarifier

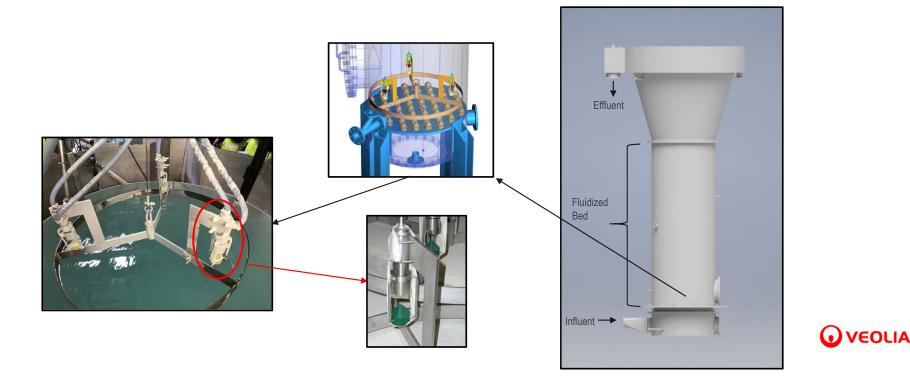


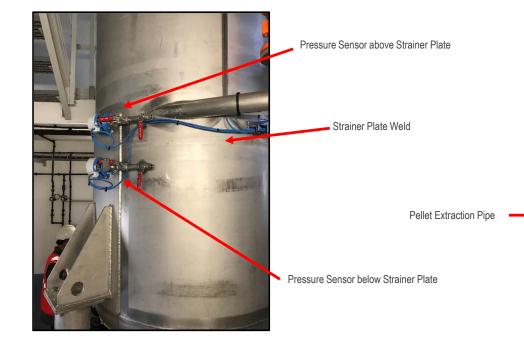
What is it and what does it do?

- Simple, fluidized bed reactor that uses a catalyst (sand, pellets) & pH adjustment chemicals (caustic or lime) to promote calcium carbonate precipitation
- Reduces calcium and magnesium hardness, along with Iron, while producing a reusable, easily dewatered pellet



How is the influent flow distributed through the reactor?


- At the bottom of the reactor is a strainer plate which has numerous flow distribution strainers installed
- Veolia's strainers are specifically designed for pellet softening and allow for material in raw water to pass through
- Even distribution of flow is critical to pellet softening


How Is the pH Adjustment Chemical Added To the Process?

- Raw water pH is increased to 8.5 9.5 with caustic soda or lime to reduce calcium carbonate solubility
 - Caustic/lime plus softened carrier water is pumped to a removable "Spider" that sits in the reactor, just above strainer deck
 - Exclusive Veolia Nozzle design ensures equal distribution of chemical across reactor cross section

When and how are the mature pellets extracted from the reactor?

- Pressure is continuously measured above and below strainer plate
- Once a predetermined differential pressure or operational time is reached, the pellets are extracted by a pump or gravity
- Pellet extraction is automated, without stopping influent flow

How are the extracted pellets dewatered and handled?

- Pellets are self draining no mechanical dewatering required
 95% solids immediately after extraction
- Bin with drain capabilities most common (1 or 1 + 1 standby)
- For larger facilities, a silo with truck unloading

ACTINA™ Pellet Softening Performance

Total Hardness Reduction (depending on calcium to magnesium hardness ratio) = 65 to 75%

- Calcium Hardness Reduction = 65 to 85%
- Magnesium Hardness Reduction = 10 to 40%

Iron Reduction = 65 to 75%

Manganese Reduction = 85 to 90%

Fluoride Reduction = 10 to 30%

ACTINA™ Pellet Softening Installation Base

50+ Installations Worldwide

- 30 years of design experience
- Largest installation 80 MGD
- Smallest installation 0.2 MGD
- 17 installations 2 MGD or less
- 19 installations with flow rates 2–10 MGD
- 14 installations > 10 MGD
- 1 US installation in operation, 2 installations under design & contract
- Latest installations benefit from lessons learned and operating experience

New Smyrna Beach, FL - Pellet Softening Pilot

- ACTINA[™] Pilot Testing Summary

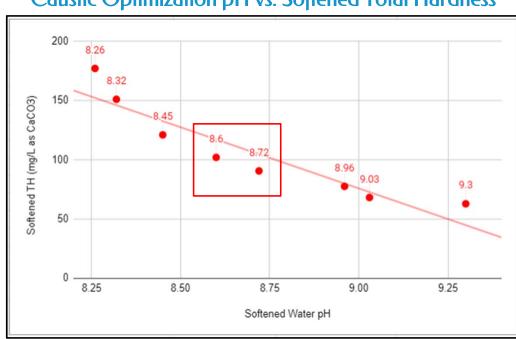
New Smyrna Beach, FL ACTINA[™] Pilot Testing Protocol and Goals

Overall Testing Protocol

- Four weeks of testing
- Multiple combinations of wells
- Operate with caustic
- Monitored/sample for hardness (total, Ca and Mg), iron, alkalinity, turbidity, and UV254 throughout

Treatment and Testing Goals

- Softened water total hardness 80 120 mg/l as CaCO3
- Monitor iron reduction rates
- Establish optimum caustic dosages & pH operation ranges



New Smyrna Beach, FL ACTINA[™] Pilot Testing Results

Average Influent Water Quality During Pilot

Total Hardness	Calcium Hardness	Magnesium Hardness	Total Alkalinity	Total Iron (mg/L)	Turbidity (NTU)	рН
(mg/L as CaCO3)	(mg/L as CaCO3)	(mg/L as CaCO3)	(mg/L as CaCO3)			
331	294	37	307	0.292	0.5	7.47

ACTINATM pellet softening achieved the goal of 100 mg/L effluent total hardness with an average caustic dose of <u>122 mg/L</u>, at an average pH of <u>8.67</u>.

Caustic Optimization pH vs. Softened Total Hardness

New Smyrna Beach, FL ACTINA[™] Pilot Testing Results

ACTINATM Softened Water Quality while using Caustic

pH Adjustment Chemical	Average Dose (mg/L)	Average pH		Total Hardness (as CaCO3)		Total Alkalinity (as CaCO3)	
		Influent	Softened	Influent	Softened	Influent	Softened
Caustic	122	7.49	8.67	328	98	304	230

Softened Water pH

Lower pH operations can reduce recarbonation costs

Softened Water Alkalinity

Minimize corrosion potential in the distribution system

Softened Water Turbidity

- Minimize solids loading on downstream filtration
- Average NTU is 2-3 NTU off of pellet softener with Caustic

Softened Water Iron

- Iron reduction up to 75% with caustic
- Varies with dose of Caustic being used

Softened Water UV254

- Not a focused goal of the pilot testing
- Softened water iron levels impacted UV254 levels
- Improvements seen after filtration simulation

pH Adjustment	Average Dose (mg/L)	Average Tota	Average UV254 (%)			
Chemical		Influent	Softened	Influent	Softened	Filtered
Caustic	122	0.363	0.103	50	55	56

New Smyrna Beach, FL - Pellet Softening O&M Evaluation

- O&M Cost Comparisons

Operating Cost Comparisons

New Smyrna Beach Lime Softening Annual Chemical and Sludge Handling Costs @ Average Daily Flow of 5.12 MGD

- Lime = \$512,000
- Polymer = \$700
- Sludge Handling/Hauling = \$122,000
- Sludge Lagoon Dredging = \$100,000

TOTAL = \$724,700

Estimated \$330,000 in annual savings based on pilot data and O&M analysis!!!

Estimated ACTINATM Annual Chemical and Pellet Handling Costs (with 125 mg/L Caustic dose @ ADF)

- Caustic = \$279,787
- Polymer = \$0
- Pellet Handling/Hauling = \$61,156
- Sludge Lagoon Dredging = \$22,500
- Catalyst (sand) = \$31,490

TOTAL = \$394,934

Existing Facility Rehab or Replacement Costs - Potential Cost Savings with ACTINA™

- Solids Contact Clarifier (Basin) <u>Renovation</u>
 - Estimated repair costs \$100,000+
 - Repairs would require extended period of time with basin out of operation
 - Repairs would likely only last 5–10 years
- Solids Contact Clarifier (Basin) <u>Replacement</u>
 - New clarifiers are estimated to cost over a \$1,000,000 each
 - Infrastructure costs such as concrete and pipeline work could cost in the \$1,000,000's

New Smyrna Beach, FL - Engineering Analysis

- Cost-Benefit & Engineering Analysis

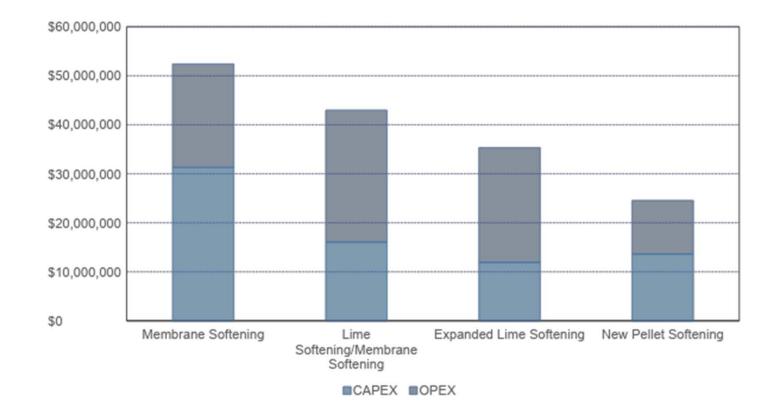
Treatment Technologies Evaluated

- Membrane softening at a new site
- Lime softening with membrane softening co-located on existing site
- Expanded lime softening facility on existing site
- New pellet softening facilities on existing site

CAPEX

Process ¹	Capital			
Membrane softening facility at new site	\$26,770,000 ²			
Lime softening and membrane softening facility co-located on existing site	\$13,320,000 ²			
Expanded lime softening facilities on existing site	\$11,920,000			
New pellet softening WTP at existing site	\$13,630,000			
 Note: 1. Capital cost includes upgrades and expansion of facilities inside the fence, no additional raw water supply wells included for membrane softening options. 				

OPEX


Key Takeaways:

- Chemicals: About 42% less than options that include lime softening
- Energy: Over 95% less than membrane option and 50% less than lime softening
- Labor: Comparable to membrane softening, but nearly 47% less than lime softening
- Residuals Management: 0 to 75% less than lime softening

20-Year CAPEX and OPEX

20-Year New Present Value¹

Process	Capital
Membrane softening facility at new site	\$44,100,000
Lime softening and membrane softening facility co-located on existing site	\$34,900,000
Expanded lime softening facilities on existing site	\$29,120,000
New pellet softening WTP at existing site	\$21,500,000
Notes: 1. Cost of money 2.86%	

QUESTIONS

Contact Us

Harrison Fowler Product Developer - Veolia harrison.fowler@veolia.com

Harold E. Schmidt, Jr., P.E., BCEE South Wastewater Practice Director - Stantec harold.schmidt@stantec.com