MABR AT WORK

Technology Evaluation, Design & Construction of the Full-Scale MABR System at the Hespeler Wastewater Treatment Plant

March 9, 2021

Look Who's Talking

Jeff Peeters, P.Eng.

Senior Product Manager SUEZ – Water Technologies & Solutions

Olav Natvik, P.Eng.

Senior Process Engineer Stantec Consulting, Ltd.

Agenda

- 1. MABR Technology Overview 15 min
- 2. Hespeler Case Study 20 min
- 3. Q&A 10 min

MABR Technology Overview

ZeeLung*

SIMPLE, SUSTAINABLE, PROCESS INTENSIFICATION

⇒ PROCESS INTENSIFICATION

Up to 50% more treatment capacity in existing tank volumes

⇒ PROCESS RESILIENCE

Resilience to upset conditions

\Rightarrow SIMPLE SOLUTION

Installed in existing tanks, no civil works, fast implementation

⇒ ENERGY SAVINGS

Up to 50% less energy

*Trademark of SUEZ; may be registered in one or more countries.

ZeeLung solves treatment challenges

- ⇒ Increase capacity
- ⇒ Augment ammonia removal
- Implement nitrogen removal
- Implement biological phosphorous removal

How It Works

ZeeLung is a biomass carrier that supports the growth of a biofilm

the carrier material "breathes" and transfers oxygen to the biofilm at very high efficiency without the use of bubbles

ZeeLung is not...

a filter

a fine bubble diffuser

What is MABR

distance from attachment surface

⇒ Media-supported biofilm with its own built-in O₂ supply

⇒ Counter-diffusional biofilm with "magical" properties

> For more information on the unique properties of counterdiffusional biofilms see Downing and Nerenberg (2008) Applied Microbiology and Biotechnology, 81:153–162

ZeeLung process

Highest efficiency of oxygen transfer by diffusion of O_2 into a biofilm

ZeeLung product

🧑 suez

ZeeLung enables process intensification

- \Rightarrow \uparrow bacteria inventory = \uparrow treatment capacity
- \Rightarrow plus... ZeeLung biofilm favors the growth of the bacteria we want nitrifiers

ZeeLung offers

Attached growth bacteria...not susceptible to washout

Rapid response to influent fluctuations

⇒ Stable cold temperature performance

15 I

ZeeLung is a simple solution

- \Rightarrow Installed in existing tanks
- ⇒ Fast deployment
- \Rightarrow No impact on hydraulic gradeline

ZeeLung saves energy

- \Rightarrow Transfer O₂ without bubbles
- ⇒ 4X lower energy than bubble aeration
- ⇒ Reduce liquid pumping due to simultaneous nitrification & denitrification

ZeeLung is a sustainable solution

- \Rightarrow Increase capacity of existing assets
- ⇒ Improve nutrient removal
- ⇒ Reduce GHG's
- \Rightarrow No plastic pollution

Innovative & proven

full-scale plants, 3 in operation for >2 years

technology demonstrations

2. Hespeler Case Study

MABR Integration at Hespeler WWTP -Ontario, Canada

Olav Natvik, M.Eng., P.Eng Stantec Consulting Ltd.

March 9, 2021

Partner Acknowledgements: Region of Waterloo **Ontario Clean Water Agency**

Undergoing upgrades: new headworks, sec clarifier, membrane WAS thickening, aerobic digestion, PAA disinfection, MABR

3

≥

S

Т

Z

0

С В В В

z

ABR

 \geq

Background - Plant upgrades

Contract #1 3rd secondary clarifier – completed

Contract #2 Headworks, WAS

thickener, digester upgrades – on-going

Contract #2 Change Order to add MABR – on-going with

Stantec

MABR Drivers for Hespeler

- Need for winter nitrification currently suffer winter nitrifier washout
- MABR capital cost = half of CAS/EA expansion (\$12M vs \$25M for 13.5 MLD)
- MABR compact footprint vs CAS/EA
- Energy saving >30% for aeration

Hespeler MABR Design Basis

1. PFD – New purpose-built tanks to fit hydraulic profile & space constraints

 Modeling used as basis for estimating MABR effluent NH3 target = 12 mg/L & plant effluent = 5 mg/L, with worst case non-nitrifying ASP

Key model settings:

- Flow=9.32 MLD, annual average load equivalent, MLSS srt=4 days, biofilm srt=20 days
- Raw sewage characteristics per updated 2014-2018 data review
- WW temp = 10 C, Biofilm=100%, RAS=100%, alum dose = 700 L/d
- Modeling objective: To assess MABR performance.

Concentrations (mg/L):

Elements	Flow [m3/d]	CBOD - T [mg/L]	TSS [mg/L]	VSS [mg/L]	N - TKN - T [mgN/L]	S_NHx [mgN/L]	S_NO3 [mgN/L] S	S_NO2 [mgN/L] P	- PO4 [mgP/L]	P - TP [mgP/L]
Raw Sewage	9320.00	205.97	216.12	166.12	42.00	27.72	0	0	2.90	5.80
Alum	0.70	0	0	0	0	0	0	0	0	0
To biofilm	9226.80	6.28	0.03	0.02	15.00	12.59	0.46	0.07	0.21	0.21
To biofilm (U)	93.20	99698.91	270686.38	177743.17	15158.42	12.59	0.46	0.07	0.21	6910.55
MABR - biofilm 30m3	9320.00	14879.69	31516.36	28141.72	2789.97	0.54	12.37	0.12	0.14	880.61
From biofilm	9226.80	3.22	2.55	2.27	3.00	0.54	12.37	0.12	0.14	0.21
From biofilm (U)	93.20	1487650.51	3151383.83	2813947.01	278700.29	0.54	12.37	0.12	0.14	88039.62
MABR 700m3	27900.43	1003.20	2706.89	1777.45	166.43	12.59	0.46	0.07	0.21	69.31
1st Half Tank	18580.43	980.38	2693.69	1761.98	164.40	9.76	1.40	0.90	0.02	69.31
2nd Half Tank	18580.43	959.91	2677.16	1743.81	162.84	7.92	2.15	1.48	0.00	69.31
Sec. Eff.	9261.13	6.04	10.77	7.00	10.80	7.92	2.15	1.48	0.00	0.28
Sec. Clarifier (U)	9320.00	1907.69	5338.86	3469.53	313.90	7.92	2.15	1.48	0.00	137.91
WAS splitter (U)	373.12	1907.69	5338.86	3469.53	313.90	7.92	2.15	1.48	0.00	137.91
Membrane WAS thickener	313.55	2.22	0.06	0.04	10.19	7.92	2.15	1.48	0.00	0.00
Membrane WAS thickener (U)	59.57	11936.51	33437.78	21729.98	1912.39	7.92	2.15	1.48	0.00	863.71
Thickened WAS	59.57	11936.51	33437.78	21729.98	1912.39	7.92	2.15	1.48	0.00	863.71

Hespeler MABR Design Unique aspects

- Business case MABR half cost vs CAS/EA expansion for nitrification
- Scale Largest full-scale MABR plant in world with 36 cassettes
- Process design ammonia removal by Zeelung; no MLSS nitrification credit in winter
- Implementation purpose-built tanks to minimize disruption during construction
- Procurement Competitively bid preselection
- Design considerations:
 - Headloss
 - o Supplemental mixing
 - Testing flexibility flow routing, instrumentation
 - Future expansions

Inlet Valve Chamber

- Screened sewage
- RAS
- MABR Bypass

വ

z

ഥ

 \triangleleft

Hespeler MABR Design Plan View

 \bigcirc

Hespeler MABR Design Section View

Ч

Hespeler MABR Design Project Status

- Construction complete Q3 2021
 - Concrete tanks completed
 - Suez equipment on-site Q2
- Biomass acclimatization Q4 2021
 - Start-up/transition plan to grow nitrifiers on cassettes
- Performance testing Q1 2022
 - 6-week monitoring/sampling period during coldest period of year (temp = 10-12 C)
 - Goal to reduce MLSS SRT=3 days & operate with nitrifier "washout" conditions & meet TAN<5 mg/L in final effluent.

3. Questions & Answers

Submit your questions via the chat function. You can address your questions to just the speakers or to the entire audience.

စာsuez

THANK YOU!

CONTACT Jeff Peeters, P.Eng. jeff.peeters@suez.com

Olav Natvik, P.Eng. olav.natvik@stantec.com

www.suezwatertechnologies.com

